## Statistical Graphics in Drug Development

Mat Soukup, Ph.D. Mat.Soukup@fda.hhs.gov

Food and Drug Administration Center for Drug Evaluation and Research Division of Biometrics 3

Insightful Life Sciences Event April 7, 2006 Bethesda, Maryland

### Disclaimer

- The views expressed in this presentation are those of the presenter and must not be taken to represent policy or guidance on behalf of the Food and Drug Administration.
- The Food and Drug Administration does not endorse or require use of any specific software including those software mentioned in the presentation.

### Outline

- Introduction
  - Principles of Good Graphics
  - Bad Graphic Examples
- 2 Use of Static Graphics
  - Data Exploration
  - Data Visualization in Presentation of Data
  - Statistical Models

Principles of Good Graphics

### From the Minds of Cleveland and Tufte

- Exclude unneeded dimensions.
- Increase ink ratio [(data-ink)/(total ink in graph)].
- Graphs do not have to depict important information quickly...may require detailed study.
- Omit "chartjunk"
- Keep continuous variables continuous.
- Show all the data when possible.

Bad Graphic Examples

Introduction

## **Example One: 3-D Barplots**



Bad Graphic Examples

## Example Two: Barplot w/ Cont. Indep. Variable



### **Outline**

- 1 Introduction
  - Principles of Good Graphics
  - Bad Graphic Examples
- 2 Use of Static Graphics
  - Data Exploration
  - Data Visualization in Presentation of Data
  - Statistical Models
- 3 Static Graphics to Interactive
- 4 Conclusion

### Introduction

### Visual Exploration of the Data

- Patient Profiles
  - Useful for small studies.
- Look for any interesting features.
  - Outliers
  - Missing Data
  - Etc.
- Do results vary by baseline characteristics?
- Use all the data when possible.
  - Superpose summary statistics.
- Goal is to understand the data.

## Patient Profile Example

### Lancet Data for XP (Yarosh et al., 2001)

- Study Objective: Does T4N5 prevent growth of new AK or BCC lesions?
- Two treatments: T4N5 and vehicle.
- Small sample sizes: T4N5=20, vehicle=9.
- Author's claim treatment effect.

## Lancet Results for XP



## Lancet Results for XP, cont.



## **Data Density Plot**



## S Code

```
dat <- read.xport("C:/Teaching/Data/efficacy.xpt")</pre>
names(dat) < - tolower(names(dat))</pre>
wk4 <- dat2[dat2$visit==4,]
wk4d \leftarrow dat2[dat2$visit==4,-c(1,2,3,5,13,18)]
datadensity(wk4d) #Frank Harrell's Hmisc package
```

## **Efficacy Across Time**



## S Code

```
xyplot(ep2_imp ~ jitter(visit), groups=trtf, data=dat2,
    panel=function(x,y,...){
        panel.superpose(x,y,...)
        panel.plsmo(x,v,...)
    key=list(
        points=list(
            pch=trellis.par.get("superpose.symbol")$pch[1:4].
            col=trellis.par.get("superpose.symbol")$col[1:4]),
        text=list(levels(dat2$trtf),
            col=trellis.par.get("superpose.symbol")$col[1:4]),
        columns=4))
```

### Introduction

### Objective: Use Data to Tell Story

- Present and convey results.
  - Graphics and statistical results intertwined.
  - Graphics supplant large tables of information but not meant to replace simple tables.
- Use all data when possible.
  - Don't rely on means and SD's for continuous variables.
  - Display distribution of data if possible.
- Examine relationships between variables
  - Panel on factor variable(s)

## Distribution of Age at Baseline-Not the Full Story

Typical Summary Table of Age at Baseline

| Treatment | Mean | SD   |
|-----------|------|------|
| Combo     | 47.6 | 14.4 |
| Moiety1   | 48.2 | 15.0 |
| Moiety2   | 48.9 | 14.7 |
| Vehicle   | 49.8 | 14.4 |

## Distribution of Age at Baseline-Full Story



## S Code

summarize, smean.sd and ecdf functions are available in Frank Harrell's Hmisc package.

```
base <- dat2[dat2$visit==1,]</pre>
with(base, summarize(age, llist(trtf), smean.sd))
ecdf(\sim age, groups=trtf, data=base)
```

## **Efficacy Across Time, Summary**



## S Code

```
ss <- with(dat2, summarize(ep2_imp, llist(visit,trtf),
                            smean.cl.normal))
names(ss) <- Cs(visit, trt, mean, lower, upper)
xYplot(Cbind(mean,lower,upper)~jitter(visit),
       groups=trt, data=ss)
```

## Examples Motivated by Dermatology Products

- Efficacy results by subgroup for multiple endpoints.
  - Alternative to large tables.
- 2 HPA axis suppression by age cohort.
  - Assess damage to immune system function
- 3 Local Topical safety.
  - Assess change across time.
- 4 Time to First Event.
  - Alternative to basic AF rate tables.

## **Efficacy by Subgroup Results**

|                                          | Combo (AB)    | MoietyA     | MoietyB     | Vehicle     |  |  |
|------------------------------------------|---------------|-------------|-------------|-------------|--|--|
| Total Le                                 | Total Lesions |             |             |             |  |  |
| Male                                     | 46.5 (33.2)   | 31.8 (32.2) | 39.0 (31.2) | 43.2 (30.2) |  |  |
| Female                                   | 42.3 (28.7)   | 27.8 (28.7) | 25.8 (28.5) | 24.1 (21.4) |  |  |
| Inflammatory Lesions                     |               |             |             |             |  |  |
| Male                                     | 48.3 (43.8)   | 34.6 (33.6) | 26.5 (34.2) | 19.7 (28.7) |  |  |
| Female                                   | 51.1 (32.5)   | 46.7 (28.7) | 41.7 (31.5) | 38.7 (32.5) |  |  |
| Non-inflammatory Lesions                 |               |             |             |             |  |  |
| Male                                     | 46.5 (33.2)   | 31.8 (32.2) | 39.0 (31.2) | 43.2 (30.2) |  |  |
| Female                                   | 42.3 (28.7)   | 27.8 (28.7) | 25.8 (28.5) | 24.1 (21.4) |  |  |
| Investigator's Global Assessment Success |               |             |             |             |  |  |
| Male                                     | 48.3 (43.8)   | 34.6 (33.6) | 26.5 (34.2) | 19.7 (28.7) |  |  |
| Female                                   | 51.1 (32.5)   | 46.7 (28.7) | 41.7 (31.5) | 38.7 (32.5) |  |  |



## **HPA Axis Suppression**



\*\* Points below horizontal line are suppressed

## **Local Safety**





## Time to First Event

### Typical Summary Table of Adverse Events by Treatment

| AL       | Low Dose           | High Dose          | Vehicle     |
|----------|--------------------|--------------------|-------------|
| Pain     | × <sub>L</sub> (%) | хн (%)             | $x_{v}$ (%) |
| Rash     | $x_L$ (%)          | х <sub>Н</sub> (%) | $x_{v}$ (%) |
| Erythema | $x_L$ (%)          | х <sub>Н</sub> (%) | $x_{v}$ (%) |
| Burning  | $x_L$ (%)          | × <sub>H</sub> (%) | $x_{v}$ (%) |
| :        | :                  | :                  | :           |
| •        | •                  | •                  | •           |



### Introduction

- Display model diagnostics.
  - QQ plots
  - Residual plots
  - etc.
- Depict model graphically.
  - Include confidence bands around the fit.
  - Can be useful for complex models.

## **Model Diagnostics**









## **Comparing Two Psoriasis Endpoints**

- Endpoint in US: Investigator Global Assessment (IGA)
  - Typically a 6 point scale: 0=clear to 5=severe
  - Each grade provides descriptions of skin parameter (e.g. scaliness, thickness, color)
- Endpoint in Europe: Psoriasis Area and Severity Index (PASI)
  - Takes into account:
    - Extent (E) involved (0-6)
    - Symptoms: redness (R), thickness (T), and scaliness (S);
       values 0=absent 4=severe
    - Body Location: Arms= .2 \* (R + T + S) \* E, Trunk= .3 \* (R + T + S) \* E, Legs= .4 \* (R + T + S) \* E
  - PASI is sum of all scores (values 0 64.8)
- One pivotal Phase 3 trial with IGA and PASI
- Five Phase 3 trials with PASI only.

- Logistic regression model to predict IGA success (clear or almost clear) using PASI score at the end of treatment.
- Use a restricted cubic spline on PASI with 3 knots (1rm function in Design library)
- Estimated Model:

$$P(IGA Success) = \frac{1}{1 + \exp\{-X\hat{\beta}\}}, \text{ where}$$

$$\hat{\beta} = 3.25 - 1.58X + .02(X - 0.6)_+^3 - .03(X - 3.3)_+^3 + .01(X - 9.4)_+^3$$

and 
$$(x)_+ = \begin{cases} x & x > 0 \\ 0 & OW \end{cases}$$



## S code

Use Frank Harrell's Hmisc and Design libraries.

```
dd <- datadist(iga.win, pasi)</pre>
options(datadist='dd')
f <- lrm(iga.win \sim rcs(pasi, 3), data= reln, x=T, y=T)
anova(f) # Performs Wald tests
plot(f, xlab='Percent Change in PASI')
box()
abline(h=0, ltv=3)
text(37, .5, labels="P(IGA success) > .5", cex=.75)
text(37, -.5, labels="P(IGA success) < .5", cex=.75)
```

Now that we're cookin', as Emeril Lagasse would say,

## 'It's time to kick it up a notch!'



Static Graphics to Interactive

## **Outline**

- **III** Introduction
  - Principles of Good Graphics
  - Bad Graphic Examples
- - Data Exploration
  - Data Visualization in Presentation of Data
  - Statistical Models
- 3 Static Graphics to Interactive

### Introduction

# Add Capability of Interacting with the Graphic, Splus Graphlets<sup>TM</sup>

- Ability to show multivariate structures
  - Safety AND Efficacy together
- Access to multitudes of information
  - Include hyperlinks
- Multi-disciplinary tool
  - Data exploration at the fingertips of end-user (M.D.)
  - No software requirement to use other than web browser with Java capabilities.

### DSI Consult

### Objective: Identify any Influential Sites for Inspection

- Depict overall efficacy and efficacy within site
- Show sample size within site
- Be able to assess adverse events by System Organ Class (SOC) for each site
- Audience: Review Team (Medical, Stat, DSI)
- E:/TEMP/soukup/DSIconsult/Introduction.html

## **HPA Axis Suppression**

### Objective: Assess Safety of Potent Topical Corticosteriod

- HPA: Method of assessing immune system function for potent topical corticosteriods.
  - Serum cortisol levels  $\leq 18\mu g/dL$  at 30 minutes post-stimulation considered suppressed.
  - Because of a higher ratio of skin surface area to body mass, it is theorized that children are at a greater risk of suppression.
- Examine reported AE's for individual subjects.
- E:/TEMP/soukup/HPA/HPA.html

### **Outline**

- - Principles of Good Graphics
  - Bad Graphic Examples
- - Data Exploration
  - Data Visualization in Presentation of Data
  - Statistical Models
- 4 Conclusion

- Graphics are critical in conveying safety and efficacy information obtained in clinical trials.
- No single plot is correct for all situations—let data guide you.
- 3 Use graphics throughout data assessment.
  - Exploration
  - Means of conveying information
  - Tool to interact
- Intertwine graphics, tables, and statistics in reports.
  - Use good graphical principles.
    - Tables can be effective for small amounts of data.
- Graphic creation is easily handled in the S language.

## Acknowledgements

- Frank Harrell, Vanderbilt University
- Matt Austin, Amgen
- Michael O'Connell, Insightful
- Clinical Review Team in Dermatology and Dental Products (DDP), FDA
- Statistical Review Team supporting DDP, FDA

### Sources

- W.S. Cleveland. Visualizing Data. Hobart Press, Summit, NJ, 1993.
- W.S. Cleveland. The Elements of Graphing Data. Hobart Press, Summit, NJ, 1993.
- P. Murrell. R Graphics. Chapman and Hall, London, UK, 2006.
- E.R. Tufte. The Visual Display of Qualitative Information. Graphics Press, Chesire, CT, 1983.
- E.R. Tufte. *Envisioning Information*. Graphics Press, Chesire, CT, 1990.
- E.R. Tufte. Visual Explanations. Graphics Press, Chesire, CT, 1997.
- F.E. Harrell. Regression Modeling Strategies. Springer, NY, 2001.
- C.F. Alzola and F.E. Harrell. An Introduction to S and the Hmisc and Design Libraries. http://biostat.mc.vanderbilt.edu/s
- W.N. Venables and B.D. Ripley. Modern Applied Statistics with S. Springer, NY, 2002.